4 Quantum Mechanics

system. According to von Neumann’s understand-
ing, the final reduction occurs in the mind of the ob-
server. While this is therefore not a full resolution of
the measurement paradox, it improves the situation.
Since the apparatus is very complex in terms of a
quantum mechanical description, the collapse of its
wavefunction is very fast. Furthermore, since it does
not directly involve the system, some inconsistency
is easier to accept. Nevertheless, one major issue re-
mains unresolved in von Neumann’s model (as well
as in all others): we only obtain probabilities from
the quantum mechanical description, i.e., we cannot
predict the result of individual measurements.

An extension of the von Neumann measurement that
is sometimes used in the context of quantum infor-
mation processing and communication is the positive
operator-valued measure (POVM), where the states
that form the basis for the measurement are not or-
thogonal. The corresponding projection operators
must still sum up to unity.

4.4 Measures of entanglement

In sectiond.2.3] we introduced a definition of entan-
glement:

A state of a bipartite system is called entangled
if it cannot be written as a direct product of two
states from the two subsystem Hilbert spaces.

Here, we elaborate on this definition and introduce
different measures that quantify entanglement. In
addition, we show that entanglement is not the only
property that distinguishes quantum mechanical sys-
tems from classical ones.

4.4.1 Entropy of entanglement
Some general requirements for measures C of entan-
glement include

e C =0 for product states ! =1, ®! 5.

e C is invariant under local unitary transforma-
tions. The measure should not depend on the
choice of basis.

A measure that fulfills these requirements for pure
states is the entropy of entanglement. It is one of
the simplest entanglement measures. It uses the von
Neumann entropy of a density operator

S(M)=—-Tr{! log,(! )}.

It vanishes for a pure state, where all populations are
0 or 1 and it reaches its maximum for the completely
mixed state, where

1 1

S (Nl) = —NTr(
where N is the dimension of the Hilbert space. The
von Neumann entropy is related to Shannon’s mea-
sure of information, which is important in the con-
text of information capacity, and to Gibbs’ entropy
from statistical mechanics. More details are given in
chapter 13.

1
log, —1) =log, N,
0g2N ) =log,

A useful interpretation of the von Neumann entropy
is that it represents the minimum number of bits re-
quired to store the result of a random variable: A
pure state ! | = |¥)(¥| can always be written in its
eigenbase as

o

Its entropy vanishes,

1 0
0 0

S(!1)=1log,(1)+0log,(0) =0.

A suitable measurement of the observable " ; there-
fore always produces the result +1, and the informa-
tion gain from such a measurement vanishes. For the
maximally mixed state

(07):

however, the entropy reaches its maximum value

(3 (5 )
(5 )
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Here, every binary observable generates completely

random values. Every result must therefore be rep-

resented by one bit, compression is not possible.
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The entropy of entanglement is dePned for bipartitee PndC(!

1) = 0, i.e. the state is not entangle

pure states as the von Neumann entropy of one of t8emilarly, for

reduced states:

E(p) =S(pa) = S(ps),

whereps = Trg(p) and vice versa. Ip is a prod-
pa and pp are pure states

uct state, such ag!!" ,

1 1
= ~(1,1,1,1
2 Pt ) )7

(" +187) (1 +187) = 5(

o=

we again bnd’(! 2) =0.

We now consider the effect of an Oentangling ge

and the entropy vanishes. If the state is maximalfHch @s

entangled, e.g.
A ]88,

the subsystems become completely mixed, =

PB = 21 The corresponding entropy, the entanglqm

CoS5;

in?
sins;

%sing |’
cos$

which is close to the CNOT gatedf = &, but exper-
entally realizable, we bnd

ment entropy of a maximally entangled 2-qubit state

is thenE(p) = S(pa) = S(ps) =1

4.4.2 Concurrence
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This corresponds to the Opre-measurementd
theory of the quantum measurement process, w
entangles the system with the apparatus.

For this state, the concurrence is

P
=sin—.

) 2
The state is therefore entangled for any Pnite a
¢. The entanglement reaches its maximum g2
for ¢ = m, where CN( CNOT, apart from theo

sign, and returns to O fap = 27.

c(! 3

Figure 4.4Meanings of the term OConcurrenceO We can also calculate the entanglement entropy

different belds (from wikipedia).

As discussed in sectidn 4.2.6, the concurrence for

pure 2-qubit states

al " + B +7] $I" + 5| $$"

C =206 %Py & 0.

If we consider a typical product state, e.g.

=]

=(1,0,0,0)

this state. The full density operator has the form
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1 1 1 Co% c+
p3 = 0, . @ )
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where
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For the subsystems, this yields

1 1 cos?
pA:TrB(p):Z(cos‘g 12>
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and
1/ 1-1sing cos®?
= = _ 2 2
pe=Tra(p) 2( cos? £ 1+3sing )’

where we used the trigonometric identity 1 +
cos(@/4) = cos?(¢/2). The difference between p4
and pp reflects the asymmetric role that control and
target bit play in the CNOT gate.
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Figure 4.5: Entanglement entropy S and concurrence
C of p3 as a function of the rotation angle

Q.

Figure [4.5|shows the resulting entanglement entropy
E(p3) = S(pa) = S(pg) as a function of the rotation
angle ¢. Clearly, the dependence is different from
that of the concurrence C(¥3) for the same state,
which starts linearly with ¢ and reaches a maximum
value of 0.5. However, both entanglement measures
reach maxima for the same state and vanish when the
state is separable.

For density matrices, the concurrence is defined as

C(p) :maX(O,/ll —lz—/h —)4), (4.89)

where A; are the eigenvalues, in decreasing order, of
the Hermitian operator

R=\/VBPv/P

and

p=(oy@0y)p"(0yR0y).

4.4.3 Tangle

Concurrence and entropy quantify the entanglement
between 2 qubits. In a 3-qubit system ABC, the
qubits can be pairwise entangled, i.e. A can be en-
tangled with B or with C, but there exist also three-
way entangled states that are not pairwise entangled.
These different types of entanglement can be quan-
tified by several entanglement measures called “tan-

L2

gle”.

We consider a pure three-qubit state and start with
the average two-tangle

_ ChL+Ch+Ch
R B

)

where C;; measures the pairwise entanglement be-
tween qubits i and k. Each of these is determined
by tracing over the third qubit and then using eq.
for the resulting 2-qubit subspace, which may
be pure or mixed.

Entanglement between one qubit and both others can
be measured by the bipartite concurrence

Cigjry =\/2 = 2Tr(p}),

where p; is the subsystem of qubit i obtained by trac-
ing over the two other qubits. If the pure 3-qubit state
is a product state, p; is pure and therefore p; = p? and
Tr(p?) =1 and Ci(jty = 0. For an entangled state,
Tr(p?) < 1 and Ci(jt) > 0. For a maximally entan-
gled state, p; %1 and Gy j) = 1.

While the bipartite concurrence tells us if qubit i
is entangled with the two others, this entanglement
could be with only one of them or with both. This
can be quantified by the three-tangle 73, which sub-
tracts the pairwise entanglement of qubit i with
qubits j and k from the bipartite concurrence to ob-
tain the essential three-way entanglement of a pure
three-qubit state:

2

73 = Cyi iy — (C7+ CR).

The difference between pure 2-way and 3-way en-
tanglement can be seen by considering the GHZ and
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W-states: guantum mechanical systemsand B, to be sepa
rable. It is directly formulated for density operatc
W)oor = 7(\001) +1010 +[100)) and therefore applicable to mixed states.

We write the basis states of quiditagi) and| ;) and
for qubit B as|l/) and|k). The density operator of tr
full system can then be written as

‘ p =Y piju i) (jl @ k) (1.

i jkl

- The partial transpose with respect to one of

‘ |W> ‘ qubits, e.g.B, is obtained by interchanging the c
responding bras and kets,

IGHZ:) = (\000)i|113>)

Nia

(1K) D)™ = 11) k],

Figure 4.6Different types of entanglement in 3-while the corresponding states of quititemain un-
partite states. changed. We apply this transformation to the den

operator:
The essential difference between these states be-

comes obvious if we perform a measurementon one P* = (1&T)p = Zpijkl i) (| @ |1) (k]
of the three qubits. In the case of the GHZ state, if ijkl

we measure, e.g., qubit 3 and obtain the result O, titfe PPT criterion states that @ has a negativi
system collapses into the std@00). Clearly, this ejgenvalue, thep is entangled. Unfortunately, tr
is no longer an entangled state, and measuring asof for this is not trivial. However, it is easy
one of the qubits completely destroys the entanglghow that for separable states the eigenvalues ¢

ment. This is therefore Oessentlal three- -way ent%“m transpose are posmve If the state is sep
glementO. In contrast, if me measure the third qublk, it can be written as

of the W state and obtain the result 0, we are left with

the statd010) + |100), in which the Prst two qubits p= ZPiPiA ®p;

are still maximally entangled. This type of entangle- '

ment is therefore called pairwise entanglement.  for some probabilitiep;. The density operatom“’B

The different types of entanglement are complemefict on the Hilbert spaces of the individual qubits
tary: If a system is strongly three-way entangled, it4e take the partial transpose of one of them, tl

bipartite entanglement cannot be large. This can B&envalues, which must all be positive or zero,
quantiPed. For a three-qubit system, not change and therefore the eigenvalues of the [:

© o uct state must also be positive or zero.
B+ +S, =1

Here, S; quantibes the single- partlcle character of 4.5 Examples

qubitk (for details, see Ref! r43])c the two-way

entanglement of qubkt with the other qubits, ands  We now apply this test to 2 specibc examples,

the Oessential three-way entanglementO. that we know to be a product state, the other aw
known entangled state. The brst example is the p
4.4.4 Positive Partial Transpose (PPT) uct state
1 000
The Positive Partial Transpose (PPT) was introduced 0 00O
by Peres[44] and by the Horodczkys [45] as aneces- P11~ [Tt = 0000
sary condition, for the joint density matrpx of two 00 0O
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Clearly, the partial transpose leaves this state in-
variant, plTB = Py, and the eigenvalues are (1,0,0,0).
Since none of them is negative, this is compatible
with a product state.

As the second example, we take one of the Bell states

pr = ST+ T+ (D)
= UM+
DT+ D
1 0 01
1[0 o0o0 0
20000
1 0 01

The T operation does not affect the states | 11) (11 |
and | {1)({{ [, but it changes

R (ORI
LA B IR (L.

We therefore get

ST+

HAD MDD
000

3 _
Py =

~-

S = O

0
0
1

8]
oo O =
[ R

To obtain the eigenvalues of this state, we have to di-
agonalize the central 2x2 matrix, which corresponds
to 0,/ 2 and therefore has the same eigenvalues as
0./2, 2,3 = +1/2. We have therefore found one
negative eigenvalue and are correspondingly assured
that p, is entangled.

4.4.6 Decay of entanglement

Superposition states like p, generally are not stable,
but decay over time. A typical evolution is that the

populations equilibrate, while the off-diagonal ele-
ments decay to zero. In the present example, the
state would evolve as

N 0 0 e"%/2
_ 0 p— 0 0
pz(l) - 0 0 p_ 0
e "2 0 0 N
with
1 —tl T
Pt = Z(l e ).

For sufficiently long times, this state tends to

1
pa(t = e0) = Zl’

which corresponds to the maximally mixed state and
is clearly not entangled.

If we apply the partial transpose to p»(t), we obtain

N 0 0 0
o p. B2 0
pZ(t) - 0 e_’/T2/2 P 0 '

0 0 0 pr

which has the eigenvalues

)’i = (p+1p* +€_I/T2/2,P7 —e_t/T2/2,p+).

0.5

Time 3

-0.5

Figure 4.7: Time dependence of the eigenvalues of
P2 fOI‘T] =T =1.

Fig. shows the time dependence of the popu-
lations (blue) and of the third (negative) eigenvalue
A3(t). The populations approach their equilibrium
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values p . The initially negative eigenvalue A3(t) in-
creases and vanishes after a time ~ 1 for the present
example, where we arbitrarily assumed 77 =7, = 1.
At this point, the system is no longer entangled.
With a certain tendency towards drama, this effect
that the system becomes separable on a finite time
scale has been termed “entanglement sudden death”.

The PPT criterion is not suited for the characteriza-
tion of systems with more then 2 qubits.

4.4.7 Quantum discord

Another measure of nonclassical correlations be-
tween two subsystems is the quantum discord. The
concept was introduced in 2001 by Ollivier and
Zurek [46] and by Henderson and Vedral [47]. It
measures correlations that can also be present in
certain mixed separable states and are considered
“quantum mechanical”. It is based on “quantum mu-
tual information”, the quantum mechanical analog of
Shannon mutual information. More precisely, dis-
cord is the difference between the total mutual infor-
mation of the subsystems and the mutual information
that can be extracted by local measurements. In the
case of pure states, the quantum discord measures
the entropy of entanglement.

We first remember the von Neumann or informa-
tion entropy S(p) = —Tr(plog, p) defined in sec-
tion #.4.1] If we apply this definition to a system
consisting of 2 qubits A and B, we can define the
entropy of the individual subsystems S(pa4), S(ps),
as well as the entropy S(p) of the combined system.
From this, we calculate

I(p) = S(pa) +S(ps) —S(p),

which is known as the von Neumann mutual infor-
mation between the two subsystems. If the sub-
systems p4 and pp are completely independent, the
sum of the information contents of the subsystems,
S(pa) + S(pg) is equal to the information content
S(p) of the combined system and the difference van-
ishes. If the two are entangled, then a measurement
of one subsystem also contains information about
the other and the total information content is smaller
than the sum of the two subsystems. The mutual

information thus measures the total correlations be-
tween the two subsystems.

We consider as an example the product state " | =
| 11). Here, S(pa) = S(pg) = S(p) =0, and the mu-
tual information vanishes.

For the Bell state

n

1
2=\ﬁ<m>+|u>>,

the entropy of the combined system vanishes, but the

subsystems are maximally mixed and their entropy
reaches the maximal value of 1. Accordingly,

I(" 2)(" 2l) =2.

In addition, we define the quantum conditional en-
tropy

S(pslpa) = min # S(Ppig4);
{s7} '

where {$?} is the set of projective operators on
subsystem A and the resulting state pg 5.
J

From this we calculate the difference

Ja(p) = S(ps) — S(palpa)-

J specifies the information gained about A as a result
of a measurement on some set of observables on B.
For a classical system, I(p) =J(p).

The quantum discord is then defined as the differ-
ence

Za(p) =1(p) —Ja(p).

It vanishes for classical systems, but not generally
for quantum mechanical systems. For a possible in-
terpretation, I describes the correlation between the
two subsystems, J the information gained about A by
measurements on B. The difference Z4(p) therefore
measures information that can’t be extracted by local
measurements.

If we use the definitions of 7 and J, we can write

Z4(p) I(p) —Ja(p)

S(pa) = S(p) +S(pslpa)-
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The first 2 terms represent the entropy of entangle-
ment before the measurements, the last term the con-
ditional entropy between the two subsystems.

If Z4(p) # 0, this means that measurements on the
subsystem B perturb the subsystem A. This does
not happen for classical systems, but can happen
for quantum systems, even if they are not entangled.
The discord can therefore also be interpreted as the
difference between the total mutual information and
the mutual information that can be extracted by lo-
cal measurements. It can be nonzero for quantum
mechanical systems in separable states. It therefore
represents a measure of “quantumness” independent
of entanglement. The quantum discord vanishes for
pointer states, which correspond to the effectively
classical states relevant for quantum measurements.

4.4.8 Entanglement witnesses

Entanglement witnesses are operators that distin-
guish specific entangled states from separable states.
Separable states are given by density operators of the

type
ps= Y pipi ®@p?,
i

where piA B are pure states of the subsystems A and
B and the p; > 0 probabilities. Clearly, these states
form a convex set, i.e. every linear combination

aps+(1—a)pB ac(0,1]

of 2 states p4 and pp in the set is also inside.

This is compared to an entangled state p,, which
therefore mus be outside of this convex set. It is then
possible to find a (hyper-)plane located between the
point and the convex set. This hyperplane can be
represented as an operator W such that

Tr{Wp,} <0 and Tr{Wps}>0.

Entanglement witness operators can always be
found, but there is no general recipe for constructing
them and they are not suitable for distinguishing be-
tween arbitrary entangled states and product states.
However, for large systems with more than 3 qubits,
there is often no other practical solution.

Entanglement witness

Separable states

Ps

Figure 4.8: Schematic representation of an entangle-
ment witness W, separating the entan-
gled state p, from the convex set of all
separable states ;.

Further reading

There is a large number of excellent books on quan-
tum mechanics and its applications at all levels.
Dirac’s classic book [48]] is a concise and clear mas-
terpiece. Cohen-Tannoudji ef al. [49] is a detailed
student-friendly textbook. Ballentine [50] has inter-
esting modern applications, whereas Peres [[51]] con-
centrates on the conceptual structure of the theory.

Problems and Exercises

1. Show that H? = 1, where H is the Hadamard
gate. Find X%, the square root of NOT. (Hint:
use (.35) for o = x or and choose ap-
propriate values for the arguments of the sine
and cosine functions.) Apply X2 to |0) and |1).

Calculate the time-dependent expectation value
of the spin vector, with components (Sg), (o =
x,y,z) for the time-dependent states (4.36) and
(@.38) and visualize it in terms of a classi-
cal magnetic moment precessing in a magnetic
field. This aspect will be discussed again in the
context of nuclear magnetic resonance in chap-
ter 2?.

Check that the state |0,¢) (4.39) is an eigen-
state of the operator

cos0S;+ sinf@cosdS,+ sinfsing S,

with eigenvalue + 71/2.
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4. Try to write the following two states as product
states:

a) ac| 1) +ad| 14) +be| 11) +bd| 1)
b J5( 1) —[41)

5. Calculate the expectation values ((Sy) and the
variances ((Sq — (Sq))?) (& = x,y,2) for the
pure state

1
x) = NG

and the mixed state

(I +14)

1
p=5(Pr+P)
Calculate the purity n for the mixed
state.

6. Calculate the quantum discord for the state

1—
p=— 1+ ¥

with [¥) = 2 (| 1) + | 1)).

S
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